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Agenda

We overview Lieb-Thirring inequalities, which estimate the
moments of negative eigenvalues of Schrödinger operators in
terms of potentials. In particular, we are interested in the
optimal constant in the inequalities. Some recent results will
be reviewed with the sketch of proof, and numerical approach
will also be introduced.

Lieb-Thirring inequalities

Analytical approach
Numerical approach

http://www.cc.matsuyama-u.ac.jp/~dan/stability/
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Schrödinger operators

Definition (Schrödinger operators)

Let
H = −△+ V (x) on L2(Rd),

where △ =
d∑

j=1

∂2

∂x2j
denotes the Laplace operator in Rd

and V : Rd → R is a potential term.

Example (Hydrogenic atom)

H = −△− Z

|x |
on L2(Rd),
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Stability of Matter

Quantum systems for N electrons and M nuclei is described by

HN,M =
N∑
j=1

(
−i∇j +

√
αA(xj)

)2
+ αV (X ,R),

where α = e2/ℏc ≈ 1/137 > 0 is Sommerfeld’s fine structure
constant, A is an arbitrary magnetic vector potential in
L2loc(R3;R3). The Coulomb potential is written by

V (X ,R) =
N∑
j=1

N∑
k=j+1

1

|xj − xk |
−

N∑
j=1

M∑
k=1

Zk

|xj − Rk |

+
M∑
j=1

M∑
k=j+1

ZjZk

|Rj − Rk |
,

where Rj is the fixed position of j th nucleus.
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Stability of Matter
Why is our world stable?

Lieb and Thirring (1976) have improved the result by Dyson
and Lenard for the stability of non-relativistic matter.

Theorem (Stability of matter of the second kind)

For all normalized, antisymmetric wavefunction ψ with q spin
states, there is a constant CLT > 0 such that

(ψ,HN,Mψ) ≥ −CLTα
2q2/3 (N +M) .

It should be remarked that the ground state energy is bounded
by the linear dependence on the total number of particles.
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Riesz mean

Energy eigenvalues for Schrödinger operators

E0,E1,E2, . . . denote all non-positive eigenvalues of H .

The moment of order γ ≥ 0 of non-positive eigenvalues for H

Tr Hγ
− =

∑
j

|Ej |γ

should be estimated in terms of V . In particular,∑
j

|Ej |γ =

{
the number of eigenvalues for γ = 0
the sum of possible energies for γ = 1.
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Lieb-Thirring inequalities

Theorem (Lieb and Thirring, 1976)

Let γ ≥ 0. Assume V− ∈ Lγ+d/2(Rd). Then, there is a
constant Lγ,d > 0 independent of V such that∑

j

|Ej |γ ≤ Lγ,d

∫
Rd

V−(x)
γ+d/2 dx

holds when 
γ ≥ 1/2 for d = 1,
γ > 0 for d = 2,
γ ≥ 0 for d ≥ 3.

Otherwise, there is V that violates the above inequalities.

V−(x) = max{−V (x), 0}, the negative part of V .
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Remarks on Lieb-Thirring inequalities

Almost all cases in Lieb-Thirring inequalities was proved by
Lieb and Thirring (1976), moreover

The critical case γ = 0 for d ≥ 3, known as CLR bound,
Cwikel (1977), Lieb (1980) and Rozenbljum (1972, 1976),
independently.

The remaining case γ = 1/2 for d = 1, Weidl (1996)

The bound cannot hold for

γ < 1/2 when d = 1 by scaling argument or approximate
δ-functions,

γ = 0 when d = 2, because any arbitrarily small potential
in two dimension creates at least one bound state. See
also Landau-Lifshitz (1968) or Simon (1976) etc.
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Semi-classical approximation

One can prove the semi-classical approximation using Weyl
asymptotics

Lclγ,d = lim
λ→∞

Tr (−△+ λV (x))γ−∫
(λV (x))γ+d/2 dx

The coefficients Lγ,d should be compared to classical ones
obtained also by

Lclγ,d = (2π)d
∫
|p|≤1

(1− |p|2)γ dp =
Γ(γ + 1)

(4π)d/2Γ(γ + d/2 + 1)

where Γ is the Gamma function.
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Comparison of Lγ,d with Lclγ,d
Some well-known facts about Rγ,d = Lγ,d/L

cl
γ,d

Rγ,d ≥ 1 for all possible γ and d , and Rγ,d is
non-increasing on γ. (Aizenman and Lieb, 1978)

Rγ,d > 1 for γ < 1. (Helffer and Robert, 1990)

R1/2,1 = 2. (Hundertmark, Lieb and Thomas, 1998)

Rγ,1 = 1 for γ ≥ 3/2.
(Hundertmark, Laptev and Weidl, 2000)

Rγ,d = 1 if γ ≥ 3/2 for all d . (Laptev and Weidl, 2000)

Proposition

There exist γC ,d ∈ [1, 3/2] ⊂ R such that{
Rγ,d > 1 if γ < γC ,d

Rγ,d = 1 if γ ≥ γC ,d .
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Open Question

Computational approach suggests the value of γC ,d with
restriction of only one eigenvalue.

γC ,1 = 3/2 analytical (solved)
γC ,2 ≈ 1.165 computational (unsolved)
γC ,3 ≈ 0.863 computational (unsolved)

Conjecture (Lieb and Thirring, 1976)

There exist γC ,d > 0 such that

Lγ,d =

{
LCγ,d γ ≥ γC ,d

L1γ,d γ ≤ γC ,d ,

where L1γ,d denotes the LT constant for only one eigenvalue.
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Numerical Studies by Barnes in Lieb-Thirring 1976
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Recent results: Case I

Dolbeault, Laptev and Loss (2008) have improved the
coefficient which is also known as best possible at the present
time.

Dolbeault, Laptev and Loss, 2008

R1,d = L1,d/L
cl
1,d ≤ π/

√
3 = 1.81... for all d .

Lcl1,1 =
Γ(1 + 1)

(4π)1/2Γ(1 + 1/2 + 1)
=

2

3π

J. Dolbeault, A. Laptev and M. Loss; J. Eur. Math. Soc., Vol. 10,
pp. 1121-1126. (2008)
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Lemma I - 1

Lemma

Assume that {ϕn}Nn=1 is orthonormal in H1(R;CM). Then,∫
R
Tr
[
U(x , x)3

]
dx ≤

N∑
n=1

∫
R
|∇ϕn(x)|2 dx ,

where U = {ujk}Mj ,k=1 with

ujk(x , y) =
N∑

n=1

ϕn(x , j)ϕn(y , k)

for j , k = 1, . . . ,M.
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Sketch of Proof for the Case I

Let ϕn be an eigenfunction corresponding to the eigenvalue En,

N∑
n=1

En =
N∑

n=1

M∑
j=1

∫
R
|ϕ′

n(x , j)|2 dx −
∫
R
Tr [V (x)U(x , x)] dx .

The Hölder inequality implies∫
R
Tr [V (x)U(x , x)] dx

≤
(∫

R
Tr
[
V (x)3/2

]
dx

)2/3(∫
R
Tr
[
U(x , x)3

]
dx

)1/3

.

Using Lemma and X =
∫
R Tr

[
U(x , x)3

]
dx ,

N∑
n=1

En ≥ X −
(∫

R
Tr
[
V (x)3/2

]
dx

)2/3

X 1/3

≥ − 2

3
√
3

∫
R
Tr
[
V (x)3/2

]
dx .
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Recent results: Case II

Rumin and Solovej has proposed a new approach of proving
that

Rumin and Solovej, 2011

R1,d = L1,d/L
cl
1,d ≤

(
d + 4

d

)d/2

.

M. Rumin, Duke Math. J., 160, no. 3, 567–597. (2011)

J. P. Solovej, ”The Lieb-Thirring inequality.” (2011)
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Energy cutoff method

For ϕ ∈ L2(Rd) we use

ϕε(x) = F−1
[
χ[0,ε)(|p|2)ϕ̂(p)

]
,

where F−1 is the Fourier inverse transform and χ denotes the
characteristic function

χ[0,ε)(x) =

{
1 if 0 ≤ x < ε,
0 otherwise.
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Lemma II - 1

Lemma

For every ϕ ∈ H1∫
Rd

|∇ϕ(x)|2 dx =

∫
Rd

∫ ∞

0

|ϕ(x)− ϕε(x)|2 dεdx .

∫
Rd

|∇ϕ(x)|2 dx =

∫
Rd

|p|2|ϕ̂(p)|2dp

=

∫
Rd

∫ |p|2

0

|ϕ̂(p)|2 dεdp

=

∫
Rd

∫ ∞

0

(1− χ[0,ε)(|p|2))|ϕ̂(p)|2 dεdp.
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Lemma II - 2

Lemma

For any sequence {ϕj}j ⊂ L2(Rd)

(
∑
j

|ϕj(x)−ϕε
j (x)|2)1/2 ≥

[
(
∑
j

|ϕj(x)|2)1/2 − (
∑
j

|ϕε
j (x)|2)1/2

]
+

,

where [f ]+ denotes the positive part of f .

(
∑
j

|ϕj(x)|2)1/2 ≤ (
∑
j

|ϕj(x)− ϕε
j (x)|2)1/2 + (

∑
j

|ϕε
j (x)|2)1/2
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Lemma II - 3

Lemma

Let {ϕj}j be an orthonormal system in L2(Rd). Then∑
j

|ϕε
j (x)|2 ≤ (2π)−dd−1|Sd−1|εd/2,

where |Sd−1| denotes the surface area of the unit ball in Rd .

For any sequence {ϕj}j ⊂ L2(Rd), we call {ϕj}j is an
orthonormal system in L2(Rd) if (ϕj , ϕk) = δjk for any j and k ,
where

δjk =

{
1 if j = k
0 if j ̸= k

.
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We begin with

ϕε
j (x) = (2π)−d/2

∫
Rd

e ix ·pϕ̂ε
j (p) dp.

Since {ϕ̂j}j is also an orthonormal system in momentum space
by assumption, we obtain

∑
j

|ϕε
j (x)|2 = (2π)−d

∑
j

∣∣∣∣∫
Rd

e ix ·pϕ̂ε
j (p) dp

∣∣∣∣2
= (2π)−d

∑
j

∣∣∣∣∫
Rd

e ix ·pχ[0,ε)(|p|2)ϕ̂j(p) dp

∣∣∣∣2
≤ (2π)−d

∫
Rd

∣∣e ix ·pχ[0,ε)(|p|2)
∣∣2 dp

by Bessel’s inequality.
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At the last integral, we change variables p = rω with
r ∈ [0,∞) and ω ∈ Sd−1 =

{
ω ∈ Rd ; |ω| = 1

}
, then

dp = rd−1drdω and∫
Rd

∣∣e ix ·pχ[0,ε)(|p|2)
∣∣2 dp =

∫
Sd−1

dω

∫ ∞

0

∣∣χ[0,ε)(r
2)
∣∣2 rd−1 dr .

By the definition of χ, we have∫ ∞

0

∣∣χ[0,ε)(r
2)
∣∣2 rd−1dr =

∫ ε1/2

0

rd−1 dr = d−1εd/2,

which completes the proof of Lemma.
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Estimate for Kinetic Energy

We need to estimate the lower bound of kinetic energies for
orthonormal systems in order to estimate the Riesz mean.

Proposition (Solovej, 2011)

Let {ϕj}j be an orthonormal system in L2(Rd). Then∑
j

∫
Rd

|∇ϕj(x)|2 dx

≥ (2π)2d2+2/d |Sd−1|−2/d

(d + 2)(d + 4)

∫
Rd

(
∑
j

|ϕj(x)|2)1+2/d dx .
(1)
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Solovej’s approach

∫
Rd

∫ ∞

0

[
(
∑
j

|ϕj(x)|2)1/2 − (
∑
j

|ϕε
j (x)|2)1/2

]2
+

dεdx

≥
∫
Rd

∫ ∞

0

[
A0(x)− Bεd/4

]2
+

dεdx .

In the last inequality, we have used

A0(x) =

(∑
j

|ϕj(x)|2
)1/2

and
B = (2π)−d/2d−1/2|Sd−1|1/2.
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Figure
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Applications

Lieb-Thirring inequalities can be applied

to estimate the ground state energy of quantum systems,
Lieb and Thrring (1976)

to estimate dimensions of attractors in theory of the
Navier-Stokes equations, Lieb (1984)

to prove a geometrical problem for ovals in the plane,
Benguria and Loss (2004)
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Lieb-Thirring conjecture

It is conjectured by Lieb and Thirring (1976) that the optimal
L1,3 coincides with Lcl1,3.

Conjecture (Lieb and Thirring, 1976)

L1,3 = Lcl1,3

Case I (Dolbeault, Laptev and Loss, 2008)

R1,d = L1,d/L
cl
1,d ≤ π/

√
3 = 1.81... for all d .

Case II (Rumin and Solovej, 2011)

L1,d/L
cl
1,d ≤

(
d + 4

d

)d/2

=

(
3 + 4

3

)3/2

≈ 3.56 when d = 3.
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Numerical Studies for Conjecture by Barnes, 1976
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Recent result through numerical approach

Conjecture (Levitt, 2014)

Rγ,1 = 2

(
γ − 1/2

γ + 1/2

)γ−1/2

for γ ≤ 3

2

Conjecture (Levitt, 2014)

γC ,2 = γ1C ,2 ≈ 1.16

Conjecture (Levitt, 2014)

γC ,3 = 1, that is, L1,3 = Lcl1,3.
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Quantum ESPRESSO

is an integrated suite of software for atomistic calculations
based on electronic structure, using densityfunctional theory, a
plane-wave basis set, pseudopotentials.

Ground-state calculations.

Structural Optimization.

Transition states and minimum energy paths.

Ab-initio molecular dynamics.

Quantum Transport.

Quantum ESPRESSO stands for Quantum opEn-Source
Package for Research in Electronic Structure, Simulation, and
Optimization
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Concluding remarks

We reviewed the analytical and numerical approach to
Lieb-Thirring inequalities for Schrödinger operators.

We have struggled at the challenge to Lieb-Thirring
conjecture L1,3 = Lcl1,3.

Numerical studies agree with Lieb-Thirring conjecture
within mainly radial potentials.
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