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We overview Lieb-Thirring inequalities, which estimate the
moments of negative eigenvalues of Schrodinger operators in
terms of potentials. In particular, we are interested in the
optimal constant in the inequalities. Some recent results will
be reviewed with the sketch of proof, and numerical approach
will also be introduced.

@ Lieb-Thirring inequalities
e Analytical approach
e Numerical approach

http://www.cc.matsuyama-u.ac.jp/~dan/stability/
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Schrodinger operators

Definition (Schrodinger operators)

Let
H=—-A+V(x) on L*RY),
d_
where A = Z denotes the Laplace operator in R
j=1 9, %
and V : RY — R is a potential term.

Example (Hydrogenic atom)

He-A—Z o [2(RY),

|
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Stability of Matter

Quantum systems for N electrons and M nuclei is described by

Hum =Y (—iV;+ VaA(x))" +aV(X,R),

j=1
where a = €?/hc ~ 1/137 > 0 is Sommerfeld's fine structure
constant, A is an arbitrary magnetic vector potential in

L2 (R3;R3). The Coulomb potential is written by
N N 1 Mo,
V(X,R) = —— -
XR=2 2 ol T Rl
J=1 k=j+1 J=1 k=1
MM
22k
Bpopec
J=1 k=j+1

where R; is the fixed position of j™ nucleus.
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Stability of Matter

Why is our world stable?

Lieb and Thirring (1976) have improved the result by Dyson
and Lenard for the stability of non-relativistic matter.
Theorem (Stability of matter of the second kind)

For all normalized, antisymmetric wavefunction ) with q spin
states, there is a constant C;7 > 0 such that

(v, Humt)) > —Crra®q®® (N + M) .

It should be remarked that the ground state energy is bounded
by the linear dependence on the total number of particles.
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Riesz mean

Energy eigenvalues for Schrodinger operators

Eq, E1, Es, ... denote all non-positive eigenvalues of H.

The moment of order v > 0 of non-positive eigenvalues for H
Tr H? = Z|EJ|7
J

should be estimated in terms of V. In particular,

Z|E'|’y | the number of eigenvalues  for v =0
—~'"71 "] the sum of possible energies for v = 1.
J
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Lieb-Thirring inequalities

Theorem (Lieb and Thirring, 1976)

Let v > 0. Assume V_ € L7T9/2(R?). Then, there is a
constant L. 4 > 0 independent of V' such that

SIBP < Ly [ V(2

J

holds when
v>1/2 ford=1,

v>0 ford = 2,
v >0 for d > 3.

Otherwise, there is V' that violates the above inequalities.

o V_(x) = max{—V(x),0}, the negative part of V.
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Remarks on Lieb-Thirring inequalities

Almost all cases in Lieb-Thirring inequalities was proved by
Lieb and Thirring (1976), moreover

@ The critical case v =0 for d > 3, known as CLR bound,
Cwikel (1977), Lieb (1980) and Rozenbljum (1972, 1976),
independently.

@ The remaining case v = 1/2 for d = 1, Weidl (1996)
The bound cannot hold for

@ 7 < 1/2 when d =1 by scaling argument or approximate
o-functions,

@ v =0 when d = 2, because any arbitrarily small potential
in two dimension creates at least one bound state. See
also Landau-Lifshitz (1968) or Simon (1976) etc.
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Semi-classical approximation

One can prove the semi-classical approximation using Weyl
asymptotics

The coefficients L, 4 should be compared to classical ones
obtained also by

cl 2\y = r( i 1)
LS4 = (2m)? A)q(l — [p[*)" dp = (47r)d/2r(1 +d/2+1)

where I is the Gamma function.
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Comparison of L, 4 with Lgl,d

Some well-known facts about R, g = L, 4/LS 4

@ R, 4> 1 for all possible v and d, and R, 4 is
non-increasing on . (Aizenman and Lieb, 1978)

® R, 4> 1fory < 1. (Helffer and Robert, 1990)

® Ri/»1 = 2. (Hundertmark, Lieb and Thomas, 1998)

o R,1=1fory>3/2
(Hundertmark, Laptev and Weidl, 2000)

® R, 4g=1ifv>3/2forall d. (Laptev and Weidl, 2000)

There exist yc,q4 € [1,3/2] C R such that

{ R%d >1 if’)/ < 7Yc,.d
Ria=1 ify>"ca.
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Open Question

Computational approach suggests the value of v¢ 4 with
restriction of only one eigenvalue.

vea =3/2 | analytical (solved)
Yc2 A~ 1.165 | computational (unsolved)
vc3 ~ 0.863 | computational (unsolved)

Conjecture (Lieb and Thirring, 1976)
There exist yc .4 > 0 such that

L = Lf/:,d Y2 Vcd
v Lf1y7d Y S YC.d>

where L; 4 denotes the LT constant for only one eigenvalue.
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Numerical Studies by Barnes in Lieb-Thirring 1976
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Recent results: Case |

Dolbeault, Laptev and Loss (2008) have improved the
coefficient which is also known as best possible at the present

time.
Dolbeault, Laptev and Loss, 2008

Rig=Lig/L{y <7/V3=18L. foralld.

r(1+1) 2

cl

L8 =
MU (Amyer(1+1/2+1) 3

@ J. Dolbeault, A. Laptev and M. Loss; J. Eur. Math. Soc., Vol. 10,
pp. 1121-1126. (2008)
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Lemmal -1

Lemma

Assume that {¢,}\_, is orthonormal in H'(R; CM). Then,

/RTr[U(x,x)ﬂ dx < ;Nl/RW(pn(x),z dx,

where U = {ujk}j’.wk:l with

Uijy Z¢nxf¢nY7)

forj,k=1,..., M.
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Sketch of Proof for the Case |

Let ¢, be an eigenfunction corresponding to the eigenvalue E,,

N N M
S E =YY [0 P dx— [ TeVUGx )] o

n=1 j=1
The Holder inequality implies

/R TrV(x)U(x, x)] dx

< ( /]R Tr [V(x)*?] dx)2/3 ( /R Tr [U(x, x)*] dx>1/3.

Using Lemma and X = [, Tr [U(x, x)?] dx,

Y Eo> X- ( /}R Tr [V(x)*2] dx)2/3 X173

> —32% RTr [V(X)yz} dx.
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Recent results: Case I

Rumin and Solovej has proposed a new approach of proving
that

Rumin and Solovej, 2011

] d+4\?
Rig=Lig/lfy < (T) :

@ M. Rumin, Duke Math. J., 160, no. 3, 567-597. (2011)
@ J. P. Solovej, " The Lieb-Thirring inequality.” (2011)
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Energy cutoff method

For ¢ € L2(RY) we use

*(x) = F* [xoa(1PP)()]

where F~1 is the Fourier inverse transform and  denotes the
characteristic function

(x) = 1 if0<x<e,
XWX =N 0 otherwise.
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Lemma ll - 1

Lemma

For every ¢ € H*

/yw )| dx—// “(x)|* dedx.

/ Vo) dx = / 1PI213(p)2dp
Rd Rd
lpl*
= [ [ e deco
RY JO

= [ [ @ x0a(ePIde) decb.
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Lemma Il - 2

Lemma
For any sequence {¢;}; C L*(RY)

Z|¢J (P2 = Z!aﬁj )2~ Zlaﬁs DA

+

where [f]; denotes the positive part of f.

(Z‘(bj(x 1/2 Z|¢J 1/2 Z|¢E 1/2
J
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Lemma Il - 3

Lemma

Let {¢;}; be an orthonormal system in L>(RY). Then

Z|¢E(X |2 271,) dd l‘sd l‘gd/2

where |S971| denotes the surface area of the unit ball in R?.

For any sequence {¢;}; C L2(RY), we call {¢;}; is an
orthonormal system in L2(R?) if (¢;, dx) = i for any j and k,

where
s oL ifi=k
TV 0 £k
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We begin with

50 = 2m) 2 [ edi(p) d

Since {¢;}; is also an orthonormal system in momentum space
by assumption, we obtain

Dl = (2m)

~ en) Z\/ 0192 () o]
< (2m)° /Rd x4 (lp)]” d

IX qua )

by Bessel's inequality.
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At the last integral, we change variables p = rw with
r€[0,00) and w € St = {w € RY |w| = 1}, then
dp = r?'drdw and

ix- 2 > 2 _
[ e do= [ o [~ ool o
Rd Sd—1 0

By the definition of y, we have

1/2

o €
/ |X[o,e)(r2)‘2 rf=ldr :/ rd=1 dr = d—lgd/2’
0 0

which completes the proof of Lemma.
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Estimate for Kinetic Energy

We need to estimate the lower bound of kinetic energies for
orthonormal systems in order to estimate the Riesz mean.

Proposition (Solovej, 2011)

Let {¢;}; be an orthonormal system in L?>(R?). Then

/ V() dx

27T d2+2/d|5d 1| 2/d

(1)
> (d—|—2)(d+4 /ZW P i
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Solovej's approach

L[ [ty ey oo

2// [Ao( Bgd/ﬂ dedx.
rd Jo

In the last inequality, we have used

1/2
= (Zm(xn?)

—d/2 4—1/2|cd—-1|1/2
B = (2r)~#2d~1/2|59- 112,

and
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Applications

Lieb-Thirring inequalities can be applied

@ to estimate the ground state energy of quantum systems,
Lieb and Thrring (1976)

@ to estimate dimensions of attractors in theory of the
Navier-Stokes equations, Lieb (1984)

@ to prove a geometrical problem for ovals in the plane,
Benguria and Loss (2004)
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Lieb-Thirring conjecture

It is conjectured by Lieb and Thirring (1976) that the optimal
L13 coincides with L{'5.

Conjecture (Lieb and Thirring, 1976)

cl
L1,3 = L1,3

Case | (Dolbeault, Laptev and Loss, 2008)

Rig = Ll,d/Lid <7/v3=181.. [foralld.

Case Il (Rumin and Solovej, 2011)

d/2 3/2
4
Ll,d/Lid < (#) = (i) ~ 3.56 when d = 3.
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Numerical Studies for Conjecture by Barnes, 1976

II. The Exponential Potential

To test the conjecture that Ll,3 = L1C,3' the eigenvalues of the
potential V) = —\ exp(—|[x|) in three dimensions were evaluated for
A = 5,10,20,30,40,50, and 100. These are listed in the table according
to angular momentum and radial nodes. These numbers have been corrobo-
rated by H. Grosse, and they can be used to calculate L '3(V>\) for any
y. The final column gives Ll,a(v)\)' since fiV)\|5/2 = \5/2(647)/125.
It is to be noted that the classical value L(l:‘3 = 0.006755, is approached

from below, in agreement with the conjecture, but not monotonically.

V) = —Ae "
S lel
[4 el nodes states le| 5/2 b4m
le 2 A 125
B 1 0.55032
A=5 0 0.55032 0 i 0°55032 0.006120
A =10 0 0.06963 1
2.18241 0 2 2.2520
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Recent result through numerical approach

Conjecture (Levitt, 2014)

—1/2
y—1/2\""" 3
R1=2 f <>
o (v+1/2) =0

Conjecture (Levitt, 2014)

Yeo2 = 7%72 ~ 1.16

Conjecture (Levitt, 2014)

Yez =1, thatis, Ly3= Lf{3-
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QuaNTUM ESPRESSO

is an integrated suite of software for atomistic calculations
based on electronic structure, using densityfunctional theory, a
plane-wave basis set, pseudopotentials.

@ Ground-state calculations.

@ Structural Optimization.

@ Transition states and minimum energy paths.
@ Ab-initio molecular dynamics.

@ Quantum Transport.

QuaNTUM ESPRESSO stands for Quantum opEn-Source
Package for Research in Electronic Structure, Simulation, and
Optimization
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Concluding remarks

@ We reviewed the analytical and numerical approach to
Lieb-Thirring inequalities for Schrodinger operators.

@ We have struggled at the challenge to Lieb-Thirring
conjecture Ly 3 = L{5.

@ Numerical studies agree with Lieb-Thirring conjecture
within mainly radial potentials.
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