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Schrödinger operators

Definition (Schrödinger operators)

Let
H = −△+ V (x) on L2(Rd),

where △ =
d∑

j=1

∂2

∂x2j
denotes the Laplace operator in Rd

and V is a real-valued potential function of x ∈ Rd .

Example (Hydrogenic atom)

H = −△− Z

|x |
on L2(Rd),
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Our Goal

Energy eigenvalues for Schrödinger operators

E0,E1,E2, . . . denote all non-positive eigenvalues of H .

The Riesz mean of order γ ≥ 0∑
j

|Ej |γ

should be estimated in the view of V . In particular,∑
j

|Ej |γ =

{
the number of eigenvalues for γ = 0
the sum of possible energies for γ = 1.

Yuya Dan Lieb-Thirring inequalities for Schrödinger and Dirac operators



Seminar on Spectral Theory at Gakushuin University 27 Feb. 2016, Tokyo

Lieb-Thirring inequalities

Theorem (Lieb and Thirring, 1976)

Let γ ≥ 0. Assume that V−(x) = max{−V (x), 0} satisfies the
condition V− ∈ Lγ+d/2(Rd). Then, there is Lγ,d > 0 which is
independent of V such that∑

j

|Ej |γ ≤ Lγ,d

∫
Rd

V−(x)
γ+d/2 dx (1)

holds when γ ≥ 1/2 for d = 1, γ > 0 for d = 2, and γ ≥ 0 for
d ≥ 3. Otherwise, there is V that violates the inequalities (4)
for any finite choice of Lγ,d .
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Remarks on Lieb-Thirring inequalities

Cwikel [1], Lieb [7] and Rozenbljum [10]; the critical case
γ = 0 for d ≥ 3. (1970s)

Lieb and Thirring [9]; almost all cases in Lieb-Thirring
inequalities. (1976)

Weidl [13]; the remaining case γ = 1/2 for d = 1. (1996)
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Semi-classical approximation

The coefficients Lγ,d should be compared to classical ones
obtained by the semi-classical approximation

Lclγ,d = (2π)d
∫
|p|≤1

(1− |p|2)γ dp =
Γ(γ + 1)

(4π)d/2Γ(γ + 1 + d/2)

where Γ is the Gamma function.
It is also known that Lγ,d/L

cl
γ,d ≥ 1 for all possible γ and d ,

and that Lγ,d/L
cl
γ,d is non-increasing on γ. (Aizenman and

Lieb, 1978)
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Semi-classical approximation

Helffer and Robert [3]; Lγ,d/L
cl
γ,d > 1 for γ < 1. (1990)

Hundertmark, Lieb and Thomas [5]; L1/2,1 = 2Lcl1/2,1.

(1998)

Hundertmark, Laptev and Weidl [4]; Lγ,1 = Lclγ,1 for
γ ≥ 3/2. (2000)

Laptev and Weidl [6] enables that Lγ,d = Lclγ,d if γ ≥ 3/2
for all d . (2000)
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Recent results (1)

Dolbeault, Laptev and Loss [2] have improved the coefficient
which is also known as best possible at the present time.

Dolbeault, Laptev and Loss, 2008

L1,d/L
cl
1,d ≤ π/

√
3 = 1.81... for all d .

[2] J. Dolbeault, A. Laptev and M. Loss; J. Eur. Math. Soc.,
Vol. 10, pp. 1121-1126. (2008)
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Recent results (2)

Rumin [11] and Solovej [12] has proposed a new approach of
proving that

Rumin and Solovej, 2011

L1,d/L
cl
1,d ≤

(
d + 4

d

)d/2

.

[11] M. Rumin, Duke Math. J., 160, no. 3, 567–597. (2011)
[12] J. P. Solovej,
”The Lieb-Thirring inequality.” (2011)
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Lieb-Thirring conjecture

It is conjectured by Lieb and Thirring [9] that the optimal L1,3
coincides with Lcl1,3.

Conjecture (Lieb and Thirring, 1976)

L1,3 = Lcl1,3

[9] E. H. Lieb and W. E. Thirring, ”Inequalities for the
Moments of the Eigenvalues of the Schrödinger Hamiltonian
and their Relation to Sobolev Inequarities,” in Studies in
Mathematical Physics (1976), pp. 269–303.
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Stability of Matter

H =
1

2

N∑
j=1

(
−i∇j +

√
αA(xj)

)2
+ αV (X ,R),

where α = e2/ℏc ≈ 1/137 > 0 is Sommerfeld’s fine structure
constant, A is an arbitrary magnetic vector potential in
L2loc(R3;R3). The Coulomb potential is written by

V (X ,R) =
N∑
j=1

N∑
k=j+1

1

|xj − xk |
−

N∑
j=1

M∑
k=1

Zk

|xj − Rk |

+
M∑
j=1

M∑
k=j+1

ZjZk

|Rj − Rk |
,

where M is number of nuclei.
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Stability of Matter
Why is our world stable?

Lieb and Thirring [9] have improved the result by Dyson and
Lenard for the stability of non-relativistic matter.

Theorem (Stability of matter of the second kind)

Let Zmax = maxj{Zj}. For all normalized, antisymmetric
wavefunction ψ with q spin states,

(ψ,Hψ) ≥ −0.231α2Nq2/3
(
1 + 2.16Zmax(M/N)1/3

)2
.

It should be remarked that N1/3M2/3 ≤ N +M implies the
linear dependence on the total number of particles.
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Pseudo-relativistic operators

Definition (Pseudo-relativistic operators)

Let
H = |−i∇|+ V (x) on L2(Rd),

where ∇ denotes the differential vector in Rd

and V is a real-valued potential function of x ∈ Rd .

It should be noted for relativistic mechanics that it is necessary
to consider the operators

T =
√

p2 + µ2 − µ (2)

for µ > 0, where√
−△− µ ≤

√
p2 + µ2 − µ ≤

√
−△. (3)

Yuya Dan Lieb-Thirring inequalities for Schrödinger and Dirac operators



Seminar on Spectral Theory at Gakushuin University 27 Feb. 2016, Tokyo

LT inequalities for pseudo-relativistic operators

Theorem (Lieb 1980, and Daubechies 1983)

Let γ ≥ 0. Assume that V−(x) = max{−V (x), 0} satisfies the
condition V− ∈ Lγ+d(Rd). Then, there is Lγ,d > 0 which is
independent of V such that∑

j

|Ej |γ ≤ Lγ,d

∫
Rd

V−(x)
γ+d dx (4)

holds when γ > 0 for d = 1, and γ ≥ 0 for d ≥ 2.
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Dirac operators

Definition (Dirac operators, d = 3)

Let
HD = α · p+ β + V (x) on L2(R3),

where p = −i∇ denotes the momentum operator in R3

and V is a real-valued potential function of x ∈ R3. Here,

α =

(
0 σ
σ 0

)
, β =

(
I2 0
0 −I2

)
(5)

where σ = (σ1, σ2, σ3) are the three Pauli matrices in standard
representation:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(6)
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Lieb-Thirring inequalities for Dirac operators (1)

Theorem (Cancelier, Lévy-Bruhl and Nourrhgat, 1995)

Let γ ≥ 0. Then, there is Cγ > 0 which is independent of V
such that∑

j

(1− E 2
j )

γ ≤ Cγ

∫
Rd

|V (x)|γ(|V (x)|3 + |V (x)|3/2) dx . (7)

The proof of the Theorem follows from∑
j

(1− E 2
j )

γ = γ

∫ 1

0

λγ−1N(E ,V ) dE , (8)

where N(E ,V ) is the number of eigenvalues of HD in
(−

√
1− E ,

√
1− E ).
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The number of eigenvalues for Dirac operators (2)

V ∈ Lp(R3) + εL∞(R3) ⇔
∫
|V (x)|≥ε

|V (x)|p dx <∞ (9)

Theorem (Cancelier, Lévy-Bruhl and Nourrhgat, 1995)

Assume that V (x) satisfies the condition
V ∈ L3(R3) + E

4
L∞(R3). Then, there is C > 0 which is

independent of V such that

N(E ,V ) ≤ C

∫
|V (x)|≥E/4

(|V (x)|3 + |V (x)|3/2) dx . (10)
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The finite number of eigenvalues

Corollary (Cancelier, Lévy-Bruhl and Nourrhgat, 1995)

If V ∈ L3(R3) ∩ L3/2(R3), the number N(V ) of eigenvalues of
HD in (−1, 1) is finite, and there is C > 0 which is
independent of V such that

N(V ) ≤ C

∫
Rd

(|V (x)|3 + |V (x)|3/2) dx . (11)
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Concluding remarks

We reviewed the topics around Lieb-Thirring inequalities
for Schrödinger operators, pseudo-relativistic operators
and Dirac operators.

We share the proof of Lieb-Thirring inequalities for Dirac
operators with rough value of coefficients..

Lieb-Thirring conjecture remains open at the present
time.
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