Research Review

Yuya Dan

Department of Mathematics, Gakushuin University¹ 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan e-mail: dan@cc.matsuyama-u.ac.jp

26 Sep. 2016

¹On leave from Matsuyama University.

Table of Contents

- A review of Dan's research activities for PDE around
 - Decay estimate in time evolution of wavefunction
 - Uniqueness theorem for Cauchy problem with
 - The free Schrödinger operator
 - Some variable coefficients elliptic operators

Cauchy problem

Let us consider the Cauchy problem for the Schrödinger equation

$$\begin{cases} i\frac{\partial}{\partial t}u(t,x) = -\frac{1}{2} \triangle u(t,x) \\ u(0,x) = u_0(x) \end{cases}$$
(1)

where *u* is a complex-valued function of $(t, x) = (t, x_1, ..., x_n) \in \mathbb{R} \times \mathbb{R}^n$, $i = \sqrt{-1}$ and \triangle is Laplacian in \mathbb{R}^n .

Decay rate of wavefunctions

Put $u_0(x) = e^{-\frac{1}{2}|x|^2}$. Then, we can explicitly calculate

$$u(t,x) = (1+it)^{-\frac{n}{2}} e^{-\frac{|x|^2}{2(1+it)}}$$
(2)

by virtue of Cauchy's integral theorem. From this expression, we have the estimate

$$(1+t^2)^{-\frac{n}{4}}e^{-\frac{1}{2}|x|^2} \le |u(t,x)| \le (1+t^2)^{-\frac{n}{4}}$$
 (3)

for any $(t, x) \in \mathbb{R} \times \mathbb{R}^n$. Therefore, it becomes clear that |u(t, x)| should behave $|t|^{-\frac{n}{2}}$ asymptotically as $t \to \pm \infty$ for every fixed $x \in \mathbb{R}^n$.

Polynomial time decay, example

Theorem (Dan (2011) for n = 1)

Let $xu_0 \in L^2(\mathbb{R})$. If $\xi^{-2}\hat{u}_0(\xi) \in L^2(|\xi| < 1)$ and $\xi^{-1}(\partial_{\xi}\hat{u}_0)(\xi) \in L^2(|\xi| < 1)$, then

$$|u(t,x)| \leq C(1+|x|)|t|^{-1},$$
 (4)

for any $t \in \mathbb{R}$ and $x \in \mathbb{R}$, where C > 0 is a constant which is independent both of t and x.

See also

- M. Miyamoto, J. Phys. A: Math. Gen., Vol. 35, pp. 7159-7171. (2002)
- J. Rauch, Commun. math. Phys., Vol. 61, pp. 149-168. (1978)

Exponential time decay

Using the Fourier integral operator

$$I_{\varphi}v(x) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{i\varphi(x,\xi)} \hat{v}(\xi) \ d\xi$$
 (5)

with
$$\varphi(x,\xi) = x \cdot \xi - i\mu x \cdot \frac{\xi}{|\xi|}$$
.

Theorem (D and K. Kajitani (2002))

Let $v_0 \in H^s$ with s = [n/2] + 1. If $u_0 = I_{\varphi}v_0$, $Re\mu > 0$ and $Im\mu > 0$, then for any $\delta > 0$ there is C > 0 such that

$$|u(t,x)| \le C \|v_0\|_{\mathfrak{s}} e^{-Re\mu Im\mu t + (Re\mu + \delta)\langle x \rangle}$$
(6)

for any $t \ge 0$ and $x \in \mathbb{R}^n$.

Exponential time decay, example

Example

As an example of Theorem 2, we can give the function $v_0(x) = e^{-x^2}$ when n = 1. Then, $u_0 = I_{\varphi}v_0$ is calculated as

$$u_0(x) = \frac{1}{2}e^{-x^2} \left\{ e^{\mu x} + e^{-\mu x} + \frac{i}{\sqrt{2\pi}} (e^{\mu x} - e^{-\mu x}) \int_0^x e^{y^2} dy \right\},$$
(7)

which gives an example of an initial value that the solution u to the Cauchy problem (1) has the property of exponential time decay.

Cauchy problem in the weighted Sobolev spaces

The Cauchy problem (1) in the weighted Sobolev spaces is equivalent to the Cauchy problem

$$\begin{cases} i\frac{\partial}{\partial t}v(t,x) = \left(-\frac{1}{2}\triangle - i\sigma\sum_{j=1}^{n}\frac{x_{j}}{\langle x\rangle}D_{j} + c(x)\right)v(t,x)\\ v(0,x) = v_{0}(x) \end{cases}$$
(8)

in the usual Sobolev spaces, where $D_j = \frac{1}{i} \frac{\partial}{\partial x_j}$ and

$$c(x) = -\frac{1}{2} \left\{ \sigma^2 - \frac{\sigma}{\langle x \rangle} - \frac{\sigma^2}{\langle x \rangle^2} + \frac{(n+1)\sigma}{\langle x \rangle^3} \right\}.$$
 (9)

Uniqueness for the free Schrödinger operator

Let H^s_{σ} denote the weighted Sobolev space, which is defined by

$$H^{s}_{\sigma} = \{ u \in L^{2}_{\text{loc}}(\mathbb{R}^{n}); \ e^{-\sigma \langle x \rangle} u \in H^{s} \}$$
(10)

for $\sigma \in \mathbb{R}$ as a subset of locally square-integrable functions in $\mathbb{R}^n.$

Theorem (Dan (2005))

Let $\sigma > 0$. If there is u in $C^0(\mathbb{R}; H^s_{\sigma}) \cap C^1(\mathbb{R}; H^{s-2})$ satisfying the Cauchy problem (1) with $u_0 = 0$, then u = 0 in the topology of $C^0(\mathbb{R}; H^s_{\sigma}) \cap C^1(\mathbb{R}; H^{s-2}_{\sigma})$.

Uniqueness for variable coefficient operators

Let us consider

$$\begin{cases} i\frac{\partial}{\partial t}u(t,x) = (a(x,D) + b(x,D))u(t,x) \\ u(0,x) = u_0(x) \end{cases}$$
(11)

where

 $a(x, D) = \sum_{j,k=1}^{n} D_j a_{jk}(x) D_k, b(x, D) = \sum_{j=1}^{n} b_j(x) D_j + c(x).$ The coefficients $a_{jk}(x)$ and $b_j(x)$ are real-valued multiplication operators, while c(x) is a complex-valued one. We assume $a_{kj} = a_{jk}$ and that there is a positive constant c_0 such that

$$\sum_{j,k} a_{jk}(x)\xi_j\xi_k \ge c_0|\xi|^2 \tag{12}$$

for any $x \in \mathbb{R}^n$ and $\xi \in \mathbb{R}^n$.

Uniqueness for variable coefficient operators, result

Moreover, we impose analiticity on the coefficients. To be precise, we introduce a function class. By $a \in A$ we mean that there are positive constants C and ρ such that

$$\sup_{x\in\mathbb{R}^n}|D_x^{\alpha}a(x)|\leq C\rho^{-|\alpha|}|\alpha|! \tag{13}$$

for any $\alpha \in \mathbb{N}^n$. Then, $a_{jk} \in \mathcal{A}$, $b_j \in \mathcal{A}$ and $c \in \mathcal{A}$ are our last but essential assumption on the coefficients.

Theorem (Dan (2008))

Let $\sigma > 0$. If there exists $u \in C^0(\mathbb{R}; H^s_{\sigma}) \cap C^1(\mathbb{R}; H^{s-2}_{\sigma})$ satisfying the Cauchy problem (11) with $u_0 = 0$, then u = 0 in the topology of $C^0(\mathbb{R}; H^s_{\sigma}) \cap C^1(\mathbb{R}; H^{s-2}_{\sigma})$.

References

- D and K. Kajitani, "Smoothing effect and exponential time decay of solutions of Schrödinger equations," Proc. Japan Acad. Ser. A Math. Sci., 78, no. 6, pp. 92-95. (2002)
- D, "Uniqueness theorem of the Cauchy problem for Schrödinger equations in weighted Sobolev spaces," Differential and Integral Equations, **18**, no. 11, pp. 1257-1271. (2005)
- D, "Uniqueness theorem in weighted Sobolev spaces of the Cauchy problem for Schrödinger type equations with variable coefficients," Advances in Differential Equations, 13, no. 5-6, pp. 489-507. (2008)
- D, "Decay of scattering solutions to one-dimensional free Schrödinger equation," Journal of Mathematical Sciences: Advances and Applications, 8, no. 2, pp. 53-59. (2011)