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Cauchy problem

Let us consider the Cauchy problem for the Schrödinger
equation {

i
∂

∂t
u(t, x) = −1

2
△u(t, x)

u(0, x) = u0(x)
(1)

where u is a complex-valued function of
(t, x) = (t, x1, . . . , xn) ∈ R× Rn, i =

√
−1 and △ is

Laplacian in Rn.
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Decay rate of wavefunctions

Put u0(x) = e−
1
2
|x |2 . Then, we can explicitly calculate

u(t, x) = (1 + it)−
n
2 e−

|x|2
2(1+it) (2)

by virtue of Cauchy’s integral theorem. From this expression,
we have the estimate

(1 + t2)−
n
4 e−

1
2
|x |2 ≤ |u(t, x)| ≤ (1 + t2)−

n
4 (3)

for any (t, x) ∈ R× Rn. Therefore, it becomes clear that
|u(t, x)| should behave |t|− n

2 asymptotically as t → ±∞ for
every fixed x ∈ Rn.
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Polynomial time decay, example

Theorem (Dan (2011) for n = 1)

Let xu0 ∈ L2(R). If ξ−2û0(ξ) ∈ L2(|ξ| < 1) and
ξ−1(∂ξû0)(ξ) ∈ L2(|ξ| < 1), then

|u(t, x)| ≤ C (1 + |x |)|t|−1, (4)

for any t ∈ R and x ∈ R, where C > 0 is a constant which is
independent both of t and x.

See also

M. Miyamoto, J. Phys. A: Math. Gen., Vol. 35,
pp. 7159-7171. (2002)

J. Rauch, Commun. math. Phys., Vol. 61, pp. 149-168.
(1978)
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Exponential time decay

Using the Fourier integral operator

Iφv(x) = (2π)−
n
2

∫
Rn

e iφ(x ,ξ)v̂(ξ) dξ (5)

with φ(x , ξ) = x · ξ − iµx · ξ
|ξ| .

Theorem (D and K. Kajitani (2002))

Let v0 ∈ H s with s = [n/2] + 1. If u0 = Iφv0, Reµ > 0 and
Imµ > 0, then for any δ > 0 there is C > 0 such that

|u(t, x)| ≤ C∥v0∥se−ReµImµt+(Reµ+δ)⟨x⟩ (6)

for any t ≥ 0 and x ∈ Rn.
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Exponential time decay, example

Example

As an example of Theorem 2, we can give the function
v0(x) = e−x2 when n = 1. Then, u0 = Iφv0 is calculated as

u0(x) =
1

2
e−x2

{
eµx + e−µx +

i√
2π

(eµx − e−µx)

∫ x

0

ey
2

dy

}
,

(7)
which gives an example of an initial value that the solution u
to the Cauchy problem (1) has the property of exponential
time decay.
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Cauchy problem in the weighted Sobolev spaces

The Cauchy problem (1) in the weighted Sobolev spaces is
equivalent to the Cauchy problem i

∂

∂t
v(t, x) =

(
−1

2
△− iσ

n∑
j=1

xj
⟨x⟩

Dj + c(x)

)
v(t, x)

v(0, x) = v0(x)
(8)

in the usual Sobolev spaces, where Dj =
1

i

∂

∂xj
and

c(x) = −1

2

{
σ2 − σ

⟨x⟩
− σ2

⟨x⟩2
+

(n + 1)σ

⟨x⟩3

}
. (9)
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Uniqueness for the free Schrödinger operator

Let H s
σ denote the weighted Sobolev space, which is defined by

H s
σ = {u ∈ L2loc(Rn); e−σ⟨x⟩u ∈ H s} (10)

for σ ∈ R as a subset of locally square-integrable functions in
Rn.

Theorem (Dan (2005))

Let σ > 0. If there is u in C 0(R;H s
σ) ∩ C 1(R;H s−2

σ ) satisfying
the Cauchy problem (1) with u0 = 0, then u = 0 in the
topology of C 0(R;H s

σ) ∩ C 1(R;H s−2
σ ).
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Uniqueness for variable coefficient operators

Let us consider{
i
∂

∂t
u(t, x) = (a(x ,D) + b(x ,D)) u(t, x)

u(0, x) = u0(x)
(11)

where
a(x ,D) =

∑n
j ,k=1 Djajk(x)Dk , b(x ,D) =

∑n
j=1 bj(x)Dj + c(x).

The coefficients ajk(x) and bj(x) are real-valued multiplication
operators, while c(x) is a complex-valued one. We assume
akj = ajk and that there is a positive constant c0 such that∑

j ,k

ajk(x)ξjξk ≥ c0|ξ|2 (12)

for any x ∈ Rn and ξ ∈ Rn.
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Uniqueness for variable coefficient operators, result

Moreover, we impose analiticity on the coefficients. To be
precise, we introduce a function class. By a ∈ A we mean that
there are positive constants C and ρ such that

sup
x∈Rn

|Dα
x a(x)| ≤ Cρ−|α||α|! (13)

for any α ∈ Nn. Then, ajk ∈ A, bj ∈ A and c ∈ A are our last
but essential assumption on the coefficients.

Theorem (Dan (2008))

Let σ > 0. If there exists u ∈ C 0(R;H s
σ) ∩ C 1(R;H s−2

σ )
satisfying the Cauchy problem (11) with u0 = 0, then u = 0 in
the topology of C 0(R;H s

σ) ∩ C 1(R;H s−2
σ ).
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