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Settings

The operator for quantum systems

Definition (Schrödinger operators)

Let
H = −△+ V (x) on L2(Rd),

where △ denotes the Laplace operator in Rd

and V is a real-valued potential function of x ∈ Rd .
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Our Goal

Energy eigenvalues

E0,E1,E2, . . . denote all non-positive eigenvalues of H .

The Riesz mean ∑
j

|Ej |γ

should be estimated in the view of V . In particular,∑
j

|Ej |γ =

{
the number of eigenvalues for γ = 0
the sum of possible energies for γ = 1.
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Lieb-Thirring inequalities
which is the well known result in mathematical physics

Theorem (Lieb and Thirring, 1976)

Let γ ≥ 0. Assume that V−(x) = max{−V (x), 0} satisfies the
condition V− ∈ Lγ+d/2(Rd). Then, there is Lγ,d > 0 which is
independent of V such that∑

j

|Ej |γ ≤ Lγ,d

∫
Rd

V−(x)
γ+d/2 dx (1)

holds when γ ≥ 1/2 for d = 1, γ > 0 for d = 2, and γ ≥ 0 for
d ≥ 3. Otherwise, there is V that violates the inequalities (1)
for any finite choice of Lγ,d .
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Remarks on Lieb-Thirring inequalities

Lieb and Thirring [9]; almost all cases in Lieb-Thirring
inequalities. (1976)

Cwikel [1], Lieb [7] and Rozenbljum [10]; the critical case
γ = 0 for d ≥ 3. (1970s)

Weidl [13]; the remaining case γ = 1/2 for d = 1. (1996)
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Semi-classical approximation

The coefficients Lγ,d should be compared to classical ones
obtained by the semi-classical approximation

Lclγ,d = (2π)d
∫
|p|≤1

(1− |p|2)γ dp =
Γ(γ + 1)

(4π)d/2Γ(γ + 1 + d/2)

where Γ is the Gamma function.
It is also known that Lγ,d/L

cl
γ,d ≥ 1 for all possible γ and d ,

and that Lγ,d/L
cl
γ,d is non-increasing on γ. (Aizenman and

Lieb, 1978)
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Semi-classical approximation

Helffer and Robert [3]; Lγ,d/L
cl
γ,d > 1 for γ < 1. (1990)

Hundertmark, Lieb and Thomas [5]; L1/2,1 = 2Lcl1/2,1.

(1998)

Hundertmark, Laptev and Weidl [4]; Lγ,1 = Lclγ,1 for
γ ≥ 3/2. (2000)

Laptev and Weidl [6] enables that Lγ,d = Lclγ,d if γ ≥ 3/2
for all d . (2000)
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Recent results (1)

Dolbeault, Laptev and Loss [2] have improved the coefficient
which is also known as best possible at the present time.

Dolbeault, Laptev and Loss, 2008

L1,d/L
cl
1,d ≤ π/

√
3 = 1.81... for all d .

[2] J. Dolbeault, A. Laptev and M. Loss; J. Eur. Math. Soc.,
Vol. 10, pp. 1121-1126. (2008)
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Recent results (2)

Rumin [11] and Solovej [12] has proposed a new approach of
proving that

Rumin and Solovej, 2011

L1,d/L
cl
1,d ≤

(
d + 4

d

)d/2

.

[11] M. Rumin, Duke Math. J., 160, no. 3, 567–597. (2011)
[12] J. P. Solovej,
”The Lieb-Thirring inequality.” (2011)
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Lieb-Thirring conjecture

It is conjectured by Lieb and Thirring [9] that the optimal L1,3
coincides with Lcl1,3.

Conjecture (Lieb and Thirring, 1976)

L1,3 = Lcl1,3

[9] E. H. Lieb and W. E. Thirring, ”Inequalities for the
Moments of the Eigenvalues of the Schrödinger Hamiltonian
and their Relation to Sobolev Inequarities,” in Studies in
Mathematical Physics (1976), pp. 269–303.
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Stability of Matter

H =
1

2

N∑
j=1

(
−i∇j +

√
αA(xj)

)2
+ αV (X ,R),

where α > 0 is Sommerfeld’s fine structure constant, A is an
arbitrary magnetic vector potential in L2loc(R3;R3). The
Coulomb potential is written by

V (X ,R) =
N∑
j=1

N∑
k=j+1

1

|xj − xk |
−

N∑
j=1

M∑
k=1

Zk

|xj − Rk |

+
M∑
j=1

M∑
k=j+1

ZjZk

|Rj − Rk |
,

where M is the number of nucleon.
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Stability of Matter
Why is our world stable?

Lieb and Thirring [9] have improved the result by Dyson and
Lenard for the stability of non-relativistic matter.

Theorem (Stability of matter of the second kind)

Let Zmax = maxj{Zj}. For all normalized, antisymmetric
wavefunction ψ with q spin states,

(ψ,Hψ) ≥ −0.747α2Nq2/3
(
1 + 2.56Zmax(M/N)1/3

)2
.
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Energy cutoff method

For ϕ ∈ L2(Rd) we use

ϕε(x) = F−1
[
χ[0,ε)(|p|2)ϕ̂(p)

]
,

where F−1 is the Fourier inverse transform and χ denotes the
characteristic function

χ[0,ε)(x) =

{
1 if 0 ≤ x < ε,
0 otherwise.
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New results

Condition (sufficient)

Let ϕj be the eigenfunction corresponding to the eigenvalue Ej

of H. Then, there is κ > 0 independent of x and n such that

(1− κn)2
∑
j

|ϕεn
j (x)|

2 ≤
∑
j

|ϕj(x)|2 a. e.,

where εn ≥ 0 are some increasing sequence.
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Main result

We obtain the new estimate of the coefficients for γ = 1 if the
condition is true.

Theorem

If the condition above is true, we can improve the estimate of
the coefficients

L1,d/L
cl
1,d ≤

(
(d + 4)(1− κ̃)

d

)d/2

with 0 ≤ κ̃ ≤ 4/(d + 4) and κ̃ is a monotonic decreasing
function of κ.
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Lemma 1

Lemma

For every ϕ ∈ H1∫
Rd

|∇ϕ(x)|2 dx =

∫
Rd

∫ ∞

0

|ϕ(x)− ϕε(x)|2 dεdx .

∫
Rd

|∇ϕ(x)|2 dx =

∫
Rd

|p|2|ϕ̂(p)|2dp

=

∫
Rd

∫ |p|2

0

|ϕ̂(p)|2 dεdp

=

∫
Rd

∫ ∞

0

(1− χ[0,ε)(|p|2))|ϕ̂(p)|2 dεdp.
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Lemma 2

Lemma

For any sequence {ϕj}j ⊂ L2(Rd)

(
∑
j

|ϕj(x)−ϕε
j (x)|2)1/2 ≥

[
(
∑
j

|ϕj(x)|2)1/2 − (
∑
j

|ϕε
j (x)|2)1/2

]
+

,

where [f ]+ denotes the positive part of f .

(
∑
j

|ϕj(x)|2)1/2 ≤ (
∑
j

|ϕj(x)− ϕε
j (x)|2)1/2 + (

∑
j

|ϕε
j (x)|2)1/2
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Lemma 3

Lemma

Let {ϕj}j be an orthonormal system in L2(Rd). Then∑
j

|ϕε
j (x)|2 ≤ (2π)−dd−1|Sd−1|εd/2,

where |Sd−1| denotes the surface area of the unit ball in Rd .

For any sequence {ϕj}j ⊂ L2(Rd), we call {ϕj}j is an
orthonormal system in L2(Rd) if (ϕj , ϕk) = δjk for any j and k ,
where

δjk =

{
1 if j = k
0 if j ̸= k

.
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We begin with

ϕε
j (x) = (2π)−d/2

∫
Rd

e ix ·pϕ̂ε
j (p) dp.

Since {ϕ̂j}j is also an orthonormal system in momentum space
by assumption, we obtain

∑
j

|ϕε
j (x)|2 = (2π)−d

∑
j

∣∣∣∣∫
Rd

e ix ·pϕ̂ε
j (p) dp

∣∣∣∣2
= (2π)−d

∑
j

∣∣∣∣∫
Rd

e ix ·pχ[0,ε)(|p|2)ϕ̂j(p) dp

∣∣∣∣2
≤ (2π)−d

∫
Rd

∣∣e ix ·pχ[0,ε)(|p|2)
∣∣2 dp

by Bessel’s inequality.
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At the last integral, we change variables p = rω with
r ∈ [0,∞) and ω ∈ Sd−1 =

{
ω ∈ Rd ; |ω| = 1

}
, then

dp = rd−1drdω and∫
Rd

∣∣e ix ·pχ[0,ε)(|p|2)
∣∣2 dp =

∫
Sd−1

dω

∫ ∞

0

∣∣e ix ·pχ[0,ε)(r
2)
∣∣2 rd−1 dr .

By the definition of χ, we have∫ ∞

0

∣∣e ix ·pχ[0,ε)(|p|2)
∣∣2 rd−1dr =

∫ ε1/2

0

rd−1 dr = d−1εd/2.
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Estimate for Kinetic Energy

We need to estimate the lower bound of kinetic energies for
orthonormal systems in order to estimate the Riesz mean.

Proposition (Solovej, 2011)

Let {ϕj}j be an orthonormal system in L2(Rd). Then∑
j

∫
Rd

|∇ϕj(x)|2 dx

≥ (2π)2d2+2/d |Sd−1|−2/d

(d + 2)(d + 4)

∫
Rd

(
∑
j

|ϕj(x)|2)1+2/d dx .
(2)
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Solovej’s approach

∫
Rd

∫ ∞

0

[
(
∑
j

|ϕj(x)|2)1/2 − (
∑
j

|ϕε
j (x)|2)1/2

]2
+

dεdx

≥
∫
Rd

∫ ∞

0

[
A0(x)− Bεd/4

]2
+

dεdx .

In the last inequality, we have used

A0(x) =

(∑
j

|ϕj(x)|2
)1/2

and
B = (2π)−d/2d−1/2|Sd−1|1/2.
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Figure
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Our new approach

Instead of the estimate (22), we can use

∫ ∞

0

[
(
∑
j

|ϕj(x)|2)1/2 − (
∑
j

|ϕε
j (x)|2)1/2

]2
+

dε

≥
∞∑
n=0

∫ εn+1

εn

{An(x)− B(ε− εn)
d/4}2 dε,

where

An(x) = A0(x)−

(∑
j

|ϕεn
j (x)|

2

)1/2

and εn+1 − εn = (An/B)
4/d with ε0 = 0.
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Applications

Lieb-Thirring inequalities can be applied

to estimate the ground state energy of quantum systems
Lieb and Thrring (1976)

to estimate dimensions of attractors in theory of the
Navier-Stokes equations Lieb (1984)

to prove a geometrical problem for ovals in the plane
Benguria and Loss (2004)
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Concluding remarks

Our new approach may improve the Lieb-Thirring
coefficient with additional conditions.

We need an example of the potential V which attains the
sufficient condition.

At the present time, Lieb-Thirring conjecture remains
open.
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