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Abstract

Let
H = −△+ V (x) on L2(Rd),

where △ denotes the Laplace operator in Rd and V is a real-valued potential function of x ∈ Rd.
E0, E1, E2, . . . denote all non-positive eigenvalues of H. The Riesz mean∑

j

|Ej |γ

should be estimated in the view of V .

Theorem 1 (Lieb and Thirring[9], 1976). Let γ ≥ 0. Assume that V−(x) = max{−V (x), 0} satisfies the
condition V− ∈ Lγ+d/2(Rd). Then, there is Lγ,d > 0 which is independent of V such that∑

j

|Ej |γ ≤ Lγ,d

∫
Rd

V−(x)
γ+d/2 dx (1)

holds when γ ≥ 1/2 for d = 1, γ > 0 for d = 2, and γ ≥ 0 for d ≥ 3. Otherwise, there is V that violates
the inequalities (1) for any finite choice of Lγ,d.

• Lieb and Thirring [9]; almost all cases in Lieb-Thirring inequalities. (1976)

• Cwikel[1], Lieb[7] and Rozenbljum[10]; the critical case γ = 0 for d ≥ 3. (1970s)

• Weidl[13]; the remaining case γ = 1/2 for d = 1. (1996)

The coefficients Lγ,d should be compared to classical ones obtained by the semi-classical approximation

Lcl
γ,d = (2π)d

∫
|p|≤1

(1− |p|2)γ dp = Γ(γ + 1)

(4π)d/2Γ(γ + 1 + d/2)

where Γ is the Gamma function. It is also known that Lγ,d/L
cl
γ,d ≥ 1 for all possible γ and d, and that

Lγ,d/L
cl
γ,d is non-increasing on γ.

• Helffer and Robert[3]; Lγ,d/L
cl
γ,d > 1 for γ < 1. (1990)

• Hundertmark, Lieb and Thomas[5]; L1/2,1 = 2Lcl
1/2,1. (1998)

• Hundertmark, Laptev and Weidl[4]; Lγ,1 = Lcl
γ,1 for γ ≥ 3/2. (2000)

• Laptev and Weidl[6]; Lγ,d = Lcl
γ,d if γ ≥ 3/2 for all d. (2000)

Dolbeault, Laptev and Loss [2] have improved the coefficient.

Recent result. Dolbeault, Laptev and Loss, 2008

L1,d/L
cl
1,d ≤ π/

√
3 = 1.81... for all d.

Rumin[11] and Solovej[12] has proposed a new approach of proving that

Recent result. Rumin and Solovej, 2011

L1,d/L
cl
1,d ≤

(
d+ 4

d

)d/2

.

Conjecture (Lieb and Thirring[9], 1976).

L1,3 = Lcl
1,3



Collorary (Stability of Matter [8]). Let Zmax = maxj{Zj}. For all normalized, antisymmetric wave-
function ψ with q spin states,

(ψ,Hψ) ≥ −0.747α2Nq2/3
(
1 + 2.56Zmax(M/N)1/3

)2

.

For ϕ ∈ L2(Rd) we use

ϕε(x) = F−1
[
χ[0,ε)(|p|2)ϕ̂(p)

]
,

where F−1 is the Fourier inverse transform.

Condition 1 (sufficient). Let ϕj be the eigenfunction corresponding to the eigenvalue Ej of H. Then,
there is κ > 0 independent of x and n such that

(1− κn)2
∑
j

|ϕεnj (x)|2 ≤
∑
j

|ϕj(x)|2 a. e.,

where εn ≥ 0 are some increasing sequence.

Theorem 2. If the condition holds, we can improve the estimate of the coefficients

L1,d/L
cl
1,d ≤

(
(d+ 4)(1− κ̃)

d

)d/2

with 0 ≤ κ̃ ≤ 4/(d+ 4).
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